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Abstract

The orientational order parameter associated with the second order nonlinear optical

(NLO) coefficient is calculated by using a statistical mechanics method that includes the

angular dependent intermolecular interaction potential. It is shown that in addition to the

alignment of dipoles due to the poling field, the orientational pair correlation (OPC) factor

is also important in determining the orientational order parameter. When OPC is included,

the order parameter becomes a function of the NLO chromorphore concentration The

concentration dependent part of the order parameter is shown to be proportional to the

Kirkood g-factor associated with the orientational correlation of the electric dipoles. In the

weak field limit, it is shown that the ratio of two nonlinear optical coefficients, X33/X 31,

remains equal to 3, independent of the specific nature of the anisotropic intermolecular

potential.
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I. Introduction

Amorphous polymers containing nonlinear optical (NO) moieties show a great

promise for the development of electro-optical (EO) devices and second harmonic

generation (SHG). However, since amorphous polymers lack the polar order as the NO

moieties in the polymers are randomly oriented, it is necessary to impose polar orientational

order to break down the centrosymmetry to induce the second order nonlinear optical effect.

This can be accomplished by poling the isotropic medium with a strong electric field. Using

external field poling, films that exhibit a large second order nonlinear optical effect have

been prepared.'

In the usual theoretical description of the electric field poling of the NLO moieties,

it is commonly assumed that the dipoles are oriented independently. The order parameters

associated with the second order macroscopic susceptibilities are simply given by Langevin

functions, L. (a), where a = fouEr,/kT. Here fo is the local field factor associated with the

external poling field Ep;M is the ground state dipole moment. One consequence of the

independent dipole orientation approach is that the orientational order parameter,

calculated for the second order susceptibility, is practically independent of the concentration

of the N.O moieties. Furthermore, this approach necessitates (for the condition of a < <1)

the ratio of the electro-optic coefficients, r33Jr 3 j, and that of the SHG coefficients, d33Jd 31,

equal to 3, independent of the detail of the poling process. However, experimental results

obtained for the EO coefficients rij, and SHG coefficient dij, are not in agreement with the

simple Langevin function description. It is found that the orientational order parameters

depend on the concentration of the NLO chromopbore, 2'3 and the ratio of the second order

coefficients may be greater than 3."

In this paper, we examine possible causes for the discrepancy. We use a generalized
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statistical mechanics approach, which, not only consider the contribution from the poling

field, but also includes the effect of orientational dependent intermolecular interaction to

describe the orientational order parameters. We show that at moderate NLO chromophore

concentrations, the dipole-dipole interaction is important in affecting the second order

nonlinear optical coefficients. Other types of anisotropic intermolecular interactions between

a NLO moiety and its surrounding medium are also considered in this generalized approach.

In Sec. HI of this paper, we relate the second order molecular hyperpolarizability to

the lowest order macroscopic nonlinear optical susceptibility. Two orientational order

parameters, characterizing the second order NLO effect, emerge from the relation. In Sec.

III the effect of orientational pair correlation (OPC) arising from the anisotropic (angular

dependent) intermolecular interaction is incorporated in the order parameter expression.

In this section, the specific dipole-dipole interaction is considered, and the order parameters

are related to the Kirkwood g-factor. In sec. IV, the general type of anisotropic

intermolecular interaction potentials is included, and we show that in the weak poling field

limit (with a < < 1), the orientational pair correlation gives rise to a pronounced effect on

the order parameter; however, the X33/X 31 = 3 relationship is not changed by the presence

of OPC. A summary and conclusion of the results of this work are presented in this section.

II. Second Order Hyperpolarizability and Macroscopic Susceptibity

We restrict the discussion to the second order nonlinear optical (NLO) process. Th:

origin of the second order nonlinear optical effect arises from the molecular

hyperpolarizability, PtK. In the molecular coordinate system, the nonlinear optical response

of the dipole moment of a representative molecule a, subject to external electromagnetic

fields at frequencies w, and w2, is given by:
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1A1() (Cal + C2) = 'eUK( a) (-'Cal 2; (, c a ) Fj (cal) FK (") (1)

where I, J, and K refer to the principal axes of molecule a with respect to the molecular

coordinate system. The hyperpolarizability, ,, is a function of frequencies, Coi, w2, and wl +

W2" The frequency dependence of the hyperpolarizability has to be calculated by using

quantum mechanics. For SHG, cl = w, = w, and for the linear EO effect, we have w-

ca and w2 = 0. Fj (cal) and FK (wo) are the Jth and Kth components of the local field F seen

by molecules at frequencies ca and ca,, respectively. In the Lorentz mode, the local field F

(w) is related to external field E (w) by, F (to) = f, E (w), where f. is t")e local field factor

given by f, = (n( 2 + 2)/3.

The corresponding nonlinear optical polarization induced by :he poling field and

optical electromagnetic fields is given by

1N

E t4 0 (2)

where V is the macroscopic volume.

It is customary to write the optical polarization in terms of the second order

macroscopic susceptibility x(2) as

P,(a (7-- jj. aI 0)EjC1kL (3)
i(WI +G'~~2) X k 12

In Eq. (3), we assume that the optical field at frequency cal is polarized along the laboratory

j-axis, and that at frequency o2 is polarized along the laboratory k-axis. One notes that in

Eq. (1) the local field is used to define the molecular hyperpolarizability, whereas in Eq. (3)
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the macroscopic external optical fields are used to define the second order optical

susceptibility. For SHG, j and k are identical; in the ensuing calculation, we set the z-axis

of the laboratory coordinate system to be along the dc poling field axis, and the y-axis to be

along the direction perpendicular to the plane of incidence. In Eq. (3), the component i, j

or k takes on one of the laboratory coordinate axes.

The molecular hyperpolarizability PIjK that appears in Eq. (1) is a third rank tensor.

However, for simplicity we assume, in this paper, that only one major component of

hyperpolarizability along the 3-axis of the molecular principal coordinate system dominates.

We define this component to be P333 P. Under this simplifying approximation, the second

order susceptibility tensor xijk(2) can be related to the dominant molecular

hyperpolarizability, p, in a simple expression. By substituting Eq. (1) into (2), and then

replacing the summation over all molecules by an average over a statistical distribution

function, we obtain

(2) (4)
Xjjk Pf2 <a ( aj-3 a62~

where p is the number density of the NL. moieties, ai30() is the projection of a unit vector

along the molecular principal axis (the 3-axis) of the representative molecule 1 onto the

laboratory axis i. The angular brackets denote an average over the one-particle distribution

function and is given by

<a () (1) f ' 'a' a (5)

In Eq. (5) and in the remaining part of this paper, we shall employ the symbol {a} to

represent 3 Cartesian coordinatesra = (x,, y,, z,) and 2 angular coordinates (0,, 0.) to
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specify the position and orientation of the principal axis of molecule a. Thus, using this

notation, we have fda . f d'r.f:"' do)ff sinedO

The one particle distribution function G({1}, E) entering into Eq. (5) is derived

from the N-body Gibbsian distribution function by integrating over the rest of (N-i)

molecules with respect to their spatial and angular coordinates:

1 N

G({11,E- f d2)dj3) ...dIN) (6)

where ZN is the configuration integral given by

ZN = f eXP-.[U- ( _L'E)f} d{1} "d(Nl (7)

Here UN is the potential energy of interaction of N molecules. The potential energy of

interaction depends on the positional as well as the orientational coordinates of the N-

molecules.

By poling the isotropic NLO medium with an external electric field E the system

becomes uniaxial and adopts a C, symmetry. While in the general case there are 18 second

order NLO coefficients', there are only two independent nonvanishing Xijk (2) elements for

the C, system,. They are given by:

age= p f.f2<cO 1  (8a)
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M = = fP (Cos e,> - <Cose8>)/2 (8b)

Equation (8a) is obtained by setting a.3(i) aP) = ak3) - cos&1, in Eq. (5) and Eq. (8b)

is obtained by setting aj3( 1) = cos 01, and a (0) = ak3-(2) = sin 01 cos 01 and then

performing an average over €1 in Eq. (5). The second identities introduced in Eqs. (8a) and

(8b) are the result of Voigt's contracted notation in which one sets the last two subscripts

zz = 3 and xx = 1, at the same time naming the first subscript z as 3. The subscript 1,

associated with 01 refers to the representative NLO chromophore 1. Clearly, in the absence

of the poling field Ep, the angular averages over cos 01 and cos3 81 vanish identically due

to the fact that the medium is macroscopically homogeneous when E , = 0.

Generally in all previous work on the order parameter, it is assumed that the dipoles

{-81, "" 'JN} (i.e., for those associated with the N_) moieties) are surrounded by a

hcmogeneous, thermodynamically independent isotropic medium so that the dipoles are in

thermal equilibrium with the external poling field EP,. In this assumption, the potential

energy of interaction of the molecules where the dipoles are located do not play a role, and

the orientation of the dipoles is completely dictated by the external poling field. As a result

, the intermolecular interaction term in Eq. (6) factors out of the N-body distribution

function and the evaluation of the order parameters given by Eq. (5) reduces to a simple

independent one-body problem. In this exceedingly simplified case X33(2) and X31(2) are

readily found to be

X ..33) =( 6 6)3otha-(6  + )=I.3 (9a)PPflf2 a3  a3  a
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X31 .3 =[L,(a)-L,(a)] -COtha (9b)
P 3 p= f221 a 3 a a 2

where L (a) is the Langevin function of order n and is given by

L(a) = fesoecMe 61 sin01d01, witha=fopE /kT (10)
f'e&co e I sinO de1

Clearly, for a< < 1, Equations (9a) and (9b) reduce to

i3 a +... (1a)
5

1- a + ... (lb)
15

Thus, in this simplified case, the ratio of X33(2) to X31(2) is thus equal to 3. Furthermore, L33

and 1.3 display only a negligible chromophore density dependence through the local field

factor fa.

III. Effects of Orientational Pair Correlation

To obtain an NLO polymer, one either disperses chromorphores exhibiting a large

hyperpolarizability 0 in an isotropic amorphous polymer matrix to form a guest/host system

or incorporates chromorphores chemically into polymer chains. Since the NLC)

chromophores are also molecules with large permanent dipole moments, the NLO polymer

system is an assembly of molecules having large dipole moments. For this reason, the dipole-
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dipole interaction needs to be included in the analysis. Consider, for example, a molecule

with a permanent dipole moment equal to 5 debye (a moderate sized dipole moment for

an NLO chromophore) subjected to a poling field of about 106V/cm. This is a very large

poling field which can be achieved only by careful sample preparation with ionic impurities

removed the voltage avoid breakdown. For this static field, the dipole-electric field

interaction energy is equal to 1.67 x 10"14 erg. If the concentration of the NLO molecules

is taken to be p = 1021 molecules/cm3 and thus the average intermolecular distance is

about p-1/3 = o-7 cm, then the dipole-dipole interaction energy would be about 2.5 x 10-14

erg, which is larger than the electric field-dipole interaction energy. Therefore, in contrast

to the usual approach by assuming independent dipoles in calculating the orientational order

parameters, the intermolecular dipole-dipole interaction energy cannot be ignored. In

addition, it is well know that the dipole-dipole interaction is long-range. The long-range

nature of the interaction is expected to give rise to a significant orientational pair

correlation (OPC) effect in the second order nonlinear optical coefficient for an assembly

of polar molecules. However, the effect of the long range OPC has yet to be considered.

In this section we first incorporate the OPC factor into the expressions of orientational order

parameters L33 and L1. We consider in this paper only the case in which the interaction

energy of dipoles with the poling field is small compared with the thermal energy, which

allows the a< < 1 approximation to be used. At 100C, the thermal energy kT is 5.15 x 10-14

erg. The other case in which the poling field is large compared with kT is more involved and

will be reported in another publication.

By assuming that the interaction energy between the poling field and the molecular

dipoles is small compared to the thermal energy, we can expand the exponential factor in

Eqs. (6) and (7) in a power series of the poling field E, keeping only the terms linear in

Ep as
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E [i+.X exp(-UkM (12)

By substituting Eq. (12) into Eq. (7), we find that

7,n = feUm'd{il.--d{N) + ()(13)
(0)3

= 4, +O0(E )

where ZN(0) is the configuration integral of the N-body system without the poling fild.

Thus, in the a< < 1 Limit, ZN is equal to ZN(0), the correction being 2nd order in Ep. As a

result, Eq. (6) can be written as

G ({1},E,) - 1 (1+acos01) + (N-i) a f cos82 p2 (I,2)d{2) (14)
V (4,t)2  V2 (4 7)2

where P2 (1, 2) is a two particle distribution function which is obtained by integrating e"

UN/kT / ZN(0 ) over the (N-2) molecules with respect to their positional and orientational

coordinates. The second term on the right hand side of Eq. (14) has a factor of (N-i)

because there are (N-i) molecular neighbors for the representative molecule 1. The two

particle distribution is averaged over the configuration of the second particle described by

{2}. This term gives rise to OPC and cannot be neglected.

The normalization condition for P2 (1, 2) is

1 f p2(1,2) dil) d{2) = 1 (15)

V'(4

Thus P2 (1, 2) is a dimensionless probability function, which at low density is given by7
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p2 (1,2) = (16)

where u (1, 2) is the angular dependent interaction potential between molecules 1 and 2.

The first term on the iight hand side of Eq. (14) is the usual independent one-

particle term, which upon substituting into Eq. (5) gives immediately Eqs. (Ila) and (11b)

after performing a simple integration. The second term is the contribution due to the pair

correlation of two interacting dipoles. We shall show that if the intermolecular interaction

is anisotropic, then this term can make an important contribution to the second order

optical coefficients.

Substitution of Eq. (14) into Eq. (5) (or specifically into Eqs. (8a) and (8b)) gives the

expression for the order parameter by

= a + a pf f cOIcO, g(1,2) d(I)d{2}
<c 1 n+2 V(47) 2  l (17)

ith n = 1 or 3.

Here g (1,2) is the orientational dependent radial distribution function, which is

related to the two particle distribution function P2 (1,2) by g(1,2) = P2 (1,2) - 1. The

distribution function vanishes when two particles are separated at a large distance. More

important is the fact that in order to contribute to the order parameter <cos' e1>, g (1,2)

must depend on orientational variables. Thus, the effect of the intermolecular interaction

on the second order NLO coefficients lies in the orientational dependent part of the g (1,2)

function, which we shall call the molecular pair correlation (MPC) function. The

orientational pair correlation (OPC) can be projected out from the molecular pair

correlation function. In accordance with Eqs. (8a), (8b) and (17), the NO coefficients are

then completely determined once the OPC is known. Thus, in addition to the poling field
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which induces orientation of the electric dipoles, the presence of OPC also assists the

orientational ordering of the NLO chromophores. As shown in recent experiments in our

laboratory, even at a moderate NLO chromophore concentration (above 1020 molecules per

cm 3), the OPC assisted contribution to the order parameter cannot be ignored.2'3

It should be pointed out that the OPC factor is the same type that is involved in the

theory of the static dielectric constant of polar fluids. The study of g (1,2) due to the

orientational dependent interaction in a homogeneous fluid consisting of anisotropic

molecules has been formally considered by several authors.8"1° Wartheim has obtained the

solution of g(1,2) using the mean spherical approximation for the hard-sphere dipolar

liquid. 11 Several theories based upon the cluster expansion by StelLt, and Stell and Weiss' 3

have also been developed to treat the hard sphere dipolar fluids. Recently, Monte Carlo

(MC) calculations have also been used to assess the accuracy of these analytical theories. 14

To obtain the molecular pair correlation (MPC) function one employs the Ornstein-

Zernike equation'1:

g(1,2)=C(1,2) + - f C(1,3)g(3,2)d(3) (18)

where n = 4r for a linear molecule, and is equal to 8r 2 for a non-linear molecule. In

Eq.(18), C(1,2) is the molecular direct correlation function.

The solution of Eq.( 18) for a polar fluid for which the intermolecular potential is

given by



u(1,2) = u(r()V- [1.. - 3 -2)(
r1 1 (19)

has been considered extensively in the literature 15 . In Eq. (19), u(r 1 ) is assumed to be

spherically symmetric, and the angular dependent term is represented by the dipole-dipole

interaction.

For this type of the intermolecular interaction potential, it was first shown by

Wertheim that the solution for g(1,2) for Eq. (18) can be assumed to be of the form1 '

g(1,2) = g(r,2) + hA (r12) A(1,2) + hD (r12) D(1,2) (20)

where g,(r,.) is spherically symmetric, depending only on the amplitude of r12. A(1,2) =

A A

s, , and D(1,2) = 3 (s, - r12 (s2 - r12 ) - (s1 s2). Here s, and s2 are unit vectors parallel

to the dipole moments of molecules 1 and 2, respectively.

Substituting Eq. (20) in Eq. (16) and after carrying out some extensive algebra, one

obtains

<cos > + a (.) foh, (r)r2dr (20a)
3 9J

<co a > a + ap(- )fh(r)rdr (20b)
5 15

One notes that the hA(r) part in the expansion of g(1,2) makes a contribution to the order



parameters. Thus, even including the OPC effect, we obtain in the weak poling field limit

rather simple expressions for X33
(2) and X31 (2) aS

(2) ppa(-5 +--G,) (21a)
X31 = r 1 5 1 5 A

and

2) (21b)

where GA is the cluster integral corresponding to hA(r) , given by

GA = fh(r)r2dr (22)

We need not go into the discussion of detailed calculations of hA (r) using various

theoretical models, but it suffices to mention that the Kirkwood g-factor defined by

g = <M(23)

N a2

is related to GA byl 1

gK = 1 + p GA (24)

In Eq. (23), M is the total dipole moment of the sample.

One may also include the dipole-dipole interaction between the NLO chromophores

and the segments of the polymer host in the calculation. The result will add another term

to Eq. (21) in the form of p 'G A, where the prime designates the segmental dipoles of the



bost. However, the total OPC contributions from both the chromophore and the host can

be incorporated into the Kirkwood g-factor by defining Eq.(24) as gK = 1 + p GA + p G' .

As a result, in terms of the Kirkwood g-factor, we obtain very simple expressions for X(2)31

and y(2) 3 as

=(2)31 ppa gK/l5 (25a)

and

X (2)33= ppa gK/ 5  (25b)

The ratio of X(2)31 to X(2) 3 3 is 1/3, identical to the independent dipole case. Thus,

the inclusion of the dipole-dipole interaction in the calculation of the order parameters does

not change the 1/3 relationship. However, the effect of OPC gives rise to a complex

chromophore density dependence in both X(2)31 and X(2)33 , as manifested in the

multiplication of the independent dipole result by the Kirkwood g-factor. Since the

Kirkwood g-factor is related to the static dielectric constant c by' 5

(e-1)(2e+1) =g :Y (26)
9e

where y is a molecular parameter defined as y = 4n p 21P , Equations (25a) and (25b), in
9kT

combination with Eq. (26) provide a useful means for characterizing the molecular

hyperpolarizability p, once X(2) 31 (or X(2)33), the ground state dipole moment p, and the

static dielectric constant c are experimentally determined.

IV. General Anisotropic Intermolecular Interactions

We next show that the 1/3 ratio is not limited to the dipole-dipole interaction

mechanism. Rather, it is the result of the weak field approximation. To show this, we
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consider a general anisotropic intermolecular interaction potential. The anisotropic potential

could either be short or long range or both. To evaluate the OPC effect on the order

parameters, one may use the invariant expansion of the angular dependent radial

distribution function. 7' 16 This is often used in equilibrium statistical mechanics of complex

fluids. The spherical invariant expansion of g (1,2) for linear molecules can be written as 16

g(1,2) = g,,,, (r.) a ( 1 ° 2)tu) (27)

where r12 indicates the orientation of the vectorrl2 =1 2 -"1 . The amplitude of r 2 is r12

= LTIE. The spherical invariant function 4bE(3t (0 1 02 1 2) is given by

S112 (QQ 2, 1 ) = (4nt) E 41r )142( 47c )11( 4% tJ 11 (28
MIM 21 1+1 2y1l 2y+ )m 2M

Y,1I(l)Y', 2 (0 2) Y m, ( 12)

where the quantity enclosed with circular brackets is a Wigner 3-j symbol, and g,,tr,) is

an orientational independent function.

Substituting Eqs. (27) and (28) into Eq. (16), and after integrating over the angular

coordinates we obtain the expression for <cos 61> as

<caO + apGrid3 (29)
3

and

T'b - - I



= <C0'6 1 > + p 01 d5 (30)

Hence,

1 j ,ose,> - <cos',>- - ' ap-Oj (31)

where G110 is the cluster integral given by

Gn'o = 0 r-g1 (r)dr (32)3y3 0: rgn()

which, for the dipolar liquid is equal to GA given in Eq. (22).

Thus, in the weak field limit, only the type of orientational dependent intermolecular

potentials between molecules, whether it arises from short- or long-range interactions, that

give rise to the dipolar order Gn10 will contribute to the second order nonlinear optical

coefficients. The quadruple (t = 2) or other types of resultant order will not contribute to

the second order NLO coefficients. This is a general result, independent of the assumption

of the nature of the intermolecular potential. One also notes from Eqs. (19) and (20) that
even in the presence of OPC, the ( / X31

(2) ratio remains equal to 3. The order

parameters 133 and L31 depend, however, on the chromorphore density through the cluster

integral Gila,

Considering the fact that <cos3 61> has a different rotational symmetry from that

of <cos 61>, one may wonder about the invariance result of the X31(2)/X 33
(2 ) ratio in the

presence of the anisotropic intermolecular interaction potential. This situation can be made

clearer if one expresses the order parameters in terms of the average over Legendre
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polynomials, P1 (cos 01) and P3 (cos 01). In terms of the Legendre polynomials, one can

write the order parameters as

1 = - {<P 1(cos61)> - <P 3(cos 1 ) >} (33a)

and

L33 = f <P1(cos6 1)> +2 <P3(cos0 1)> (33b)

In the weak field, the OPC cannot connect the <P 3 (cos 61)> term, and as a result the

L31/1,33 ratio is 1/3, independent of the specific nature of the anisotropic intermolecular

interaction.

Two possible mechanisms will bring in the < P3 > term and results in the departure

from the 1/3 ratio. One is the deviation from the phase matching condition that makes the

second order susceptibility wave vector dependent, and the other arises from a high poling

field.

The calculations carried out in this work are based upon a general assumption of

perfect phase matching in the second order NLO effect. As a result of this assumption, the

second order NLO susceptibility does not dependent on the wave vector. In the situation

where the phase matching condition is not met, and the sample is spatially inhomogeneous,

the second order susceptibility would become wave vector dependent. In this situation, the

efficiency of second harmonic generation will be low; however, the X33(2)/X31 (2) = 3

relationship will break down even for the weak field dipolar system. The other situation that

will give rise to the deviation from 1/3 for the X31(3)/X 33
(2) ratio is the case of high poling

field. For example, when a = 2, a quick calculation would show, for independent dipole

orientation, the X33(3)/X 31
2) ratio to be equal to 3.5. Intermolecular interactions among
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NLO chromophores and between the NLO chromophores and segmental dipoles of the host

cause further departure and result in an even larger ratio. We shall report elsewhile the

calculation of the high poling field case.

In summary, we have shown that the orientational order parameters associated with

second order nonlinear optical susceptibilities depend on the NLO chromorpbore

concentration. This is due to the presence of anisotropic intermolecular interactions. The

concentration dependent part of the order parameters are shown to be related to the

Kirkwood g-factor associated with the correlation of electric dipoles in polar fluids. In the

weak field limit, the X33 (2)/X 3 1(2) ratio is not changed by the presence of the anisotropic

intermolecular interactions.
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